logarithmic trickery

Consider that since \log(a)\log(b)=\log(a^{\log b})=\log(b^{\log{a}}, and therefore, somewhat unexpectly: a^{\log b} = b^{\log a}
we can use it to construct new identities thusly

Let A = \prod_{n=1}^{\infty} \sqrt[2]{1+\frac{1}{n^{2}}}

Let B = \prod_{m=1}^{\infty} \sqrt[e^{m}]{1+\frac{1}{m^{3}}}

Therefore, since we know that A^{\log(B)}=B^{\log(A)} we can use that
to explicitly calculate a new identity thusly:

1. Compute the logarithm of A, \log(A):
\log(A) = \frac{1}{2} \sum_{v=1}^{\infty} \frac{(-1)^{v+1}\zeta(2v)}{v}

2. Compute the logarithm of B, \log(B):
\log(B) = \sum_{s=1}^{\infty} \frac{(-1)^{s+1}\mathrm{Li}_{(3s)}(1/e)}{s}

3. Combine them:

\prod_{n=1}^{\infty} \prod_{s=1}^{\infty} \sqrt[s]{\left(1+\frac{1}{n^{2}}\right)^{(-1)^{s+1}\mathrm{Li}_{(3s)}(1/e)}} = \prod_{m=1}^{\infty} \prod_{v=1}^{\infty} \sqrt[ve^{m}]{\left(1+\frac{1}{m^{3}}\right)^{(-1)^{v+1}\zeta(2v)}}

>>> A = fp.nprod(lambda n: sqrt(1+1/(n*n)), [1,inf])
>>>
>>> A
mpf(‘1.9109509100512501’)
>>> B = fp.nprod(lambda m: (1+1/(m**3))**(1/exp(m)), [1,inf])
>>>
>>> B
mpf(‘1.3140291251423164’)
>>> A**log(B)
mpf(‘1.1934623097049237’)
>>> B**log(A)
mpf(‘1.1934623097049237’)

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s